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Temperature Dependence of Composite
Microwave Cavities
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Abstract—Composite microwave resonant cavities contain sev-
eral regions of different dielectric materials. The variation of the
resonant frequency with temperature is described in terms of a
linear model. One part of the frequency variation is caused by the
physical expansion of material parts, and the other by the change
in the relative dielectric constant. The frequency sensitivity coef-
ficients for both types of variation are obtained with the use of a
computer code for numerical analysis of the electromagnetic field
inside bodies of revolution.

Index Terms—Author, please supply index terms. E-mail key-
words@ieee.org for information.

I. INTRODUCTION

RESONANT cavities used in filters and combiners for
mobile communications are often comprised of a metal

enclosure filled with several dielectric regions. Typically, the
dielectrics are: 1) air; 2) high-permittivity low-loss dielectric
(the dielectric resonatorper se); and 3) low-permittivity mod-
erate-loss dielectric (used as a support). The support keeps the
dielectric resonator separated from the metal walls in order to
reduce the losses. An example of such a composite resonant
cavity of rotationally symmetric shape is shown in Fig. 1.

The individual communication channels in wireless transmis-
sion networks operating from 400 MHz to 2 GHz can be as close
as 150 kHz. Therefore, the resonant cavities must exhibit very
high stability of resonant frequency with power and temperature
variations. To analyze the temperature stability, one must know
the properties of all the materials used in the construction of the
cavity. The experimental characterization of dielectric materials
suitable for resonant cavities has been a subject of [1]–[4]. The
temperature variation of composite resonant cavities has been
analyzed in [5] and [6]. Some of these procedures have been
summarized and discussed in [7, ch. 7].

This paper describes a linear analysis of temperature varia-
tions, along the lines outlined in [8]. It shows how a computer
code for numerical analysis of the electromagnetic field in the
bodies of revolution can be utilized to determine the sensitivity
coefficients of a particular cavity. Some general relationships
between the sensitivity coefficients are established, which are
then utilized to check the numerical accuracy of the results. To
overcome the lack of reliable data provided by manufacturers of
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Fig. 1. Composite resonant cavity.

dielectric materials, an independent measurement is performed
to determine the temperature coefficient of the dielectric con-
stant. Finally, the computed results for the behavior of the com-
posite resonant cavity are compared with measurements in a
temperature chamber.

II. L INEAR MODEL OF FREQUENCYVERSUSTEMPERATURE

BEHAVIOR

A composite microwave resonator consists of mechanical
parts, which are either made of dielectrics or of conductors.
Both dielectrics and conductors expand their sizewith
increasing temperature. The dominant term, which describes
this change, is a linear expansion coefficient

(1)

The value of should be evaluated at room temperature,
which is the origin for our temperature modeling. The depen-
dence of the relative dielectric constantwith temperature is
specified by the coefficient

(2)

For each material part of a composite resonator,and
have different values. When the ambient temperature changes,
the sizes of all mechanical parts change accordingly, as do
the values of dielectric constants. Therefore, the resonant
frequency of the entire system will also be affected by the
change in temperature.

Consider a composite resonator shown in Fig. 1, consisting
of two dielectric parts (besides air) and a conductive shielding
cavity. The main element determining the resonant frequency is
the dielectric resonator having the relative dielectric constant
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, radius , and height . The dielectric resonator is re-
moved from the conductor surface by a spacer of radiusand
height , having a relative dielectric constant . The cylin-
drical conductive enclosure has radiusand height . The
resonant frequency of this composite resonator is some function
of the dimensions to and to , and also a function of
dielectric constants and . The air that fills the rest of the
resonator has the relative dielectric constant equal to unity. The
resonant frequency of this system is expressed in general form
as follows:

(3)

For most practical resonators, functioncannot be expressed
in a simple analytical form. However, various computer codes
have been developed that enable the user to determine the reso-
nant frequency of the system, when all the dimensions and ma-
terial properties are entered as input data. We have used the pro-
gram AKBOR [9]. For simplicity of further derivations, various
lengths ( ’s and ’s) will be denoted by a common letter. For
instance , , , etc., up to .
A small change in frequency , caused by a small change in
temperature , is obtained by taking a differential of as fol-
lows:

(4)

Increments are now expressed with’s from (1)

(5)

whereas increments are expressed with the use of’s
from (2)

(6)

Using this notation, the relative change in frequency, per degree
centigrade, is expressed as follows:

(7)

Coefficients describe the sensitivity of frequency with re-
spect to length as follows:

(8)

Similarly, coefficients express the sensitivity of the resonant
frequency with respect to the change in dielectric constant

(9)

At this point, it is of interest to introduce a useful relationship,
which is valid for any composite resonator, consisting of any
number of mechanical parts:the sum of the length sensitivity
coefficients must be equal to negative unity

(10)

In the example from Fig. 1, subscriptgoes from 1 to 6, but
the above relationship is also valid for any other total number of
individual dimensions. The validity of (10) can be understood
by starting with (7) and assuming that the entire composite res-
onator has been machined for a second time in a slightly larger
version. Suppose each of the lengthsis made to be percent
larger as follows:

(11)

The newly machined resonator is kept at the same room temper-
ature as the original smaller one. Thus, the dielectric constants
of both resonators are the same, as their ambient temperatures
are the same. According to (7), the relative change in frequency
between the larger and smaller resonator must be equal to the
relative change in size as follows:

(12)

As each of the individual dimensions is increased by the same
percentage, as specified by (11), the result must be such as de-
scribed by (10), which concludes the proof.

Equation (10) comes in very handy when the length sensi-
tivity coefficients are evaluated numerically. Namely, each

is computed from (8) by incrementing the dimensionsby
a small percentage (1% or less), and computing the change
in the resonant frequency. When all the ’s have been com-
puted, their sum must be equal to negative unity, verifying that
the entire computation has been done correctly.

III. EPSILON SENSITIVITIES

A similar relationship holds for coefficients:the sum of
the epsilon sensitivity coefficients must be equal to negative
one-halfas follows:

(13)

This relationship can be justified by the theory of material per-
turbations in cavities [10, p. 328]. The change in frequency due
to a small change of the relative dielectric constant of the
th region is

(14)

In the above, is the electric stored energy in theth region,
and is the total stored electric energy in the resonator (thus,

). Suppose the relative dielectric constants in all the
dielectric regions have been changed by the same percentage
as follows:

(15)
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In such a case, the total relative change in resonant frequency
would become

(16)

Starting with (4), the same change in relative dielectric constants
by % will result in the following frequency change:

(17)

Comparing (16) with (17), one obtains (13), which concludes
the proof.

Another useful corollary of the above derivation is the fol-
lowing: epsilon sensitivities are equal to a negative one-half of
the corresponding electric filling factors

(18)

The electric filling factors are simply the ratios of the stored
electric energies in theth dielectric region to the total stored
electric energy in the entire resonator [7, p. 332]

(19)

The differential change in frequency, caused by a change of a
dielectric constant in theth region, is

(20)

Using (9), the above relation becomes

(21)

Comparing (21) with (14), we obtain (18), which demonstrates
the validity of the corollary.

The practical significance of (18) is the following. Instead of
computing the individual derivatives in (9) by numerical differ-
entiation of the resonant frequency, coefficients can be ob-
tained by computing the ratios of stored electric energies. When
the computer code is capable of producing explicitly the re-
quired partial stored energies, the numerical integration implicit
in (19) will provide more accurate results, and the frequency of
operation will have to be evaluated only once.

IV. TEMPERATUREDIAGRAM OF A COMPOSITECAVITY

One can assume that the dielectric materials expand their size
with temperature in an isotropic way so that in the example from
Fig. 1, for each dielectric region, the value ofin the radial
direction is the same as in the axial direction ( , etc.).
When such an assumption is valid, (7) becomes

(22)

In the above, and denote the mechanical expansion
properties of the dielectric resonator and of the support, and

Fig. 2. Temperature diagram of a composite resonant cavity.

denotes the mechanical expansion of the conducting cavity.
Analogously, and specify the variations of dielectric con-
stants with temperature. The air does not change its dielectric
constant with temperature, thus, it is not included in (22).

Each of the terms in (22) can be graphically represented by
a straight-line segment, such as shown in Fig. 2. The horizontal
axis contains the absolute values of’s and ’s. The vertical
axis represents the relative change in frequency. The units of
both axes are parts per million per degree centigrade (ppm/C).
The sum of sensitivity factors, which belong to the same ex-
pansion coefficient , represent the slopes of individual straight
lines in the diagram. Thus, the negative value of ( )
is plotted as a negative slope, and similarly for other materials.
When and are both negative, their product contributes to
a positive increase in . In order to plot the absolute values of

always in the increasing horizontal direction, the slopes
in such a case are plotted positive.

In the case shown, the first three terms of (22) result in a
negative change in frequency due to increments in length with
temperature (first line represents the puck material expansion,
the second line the support material expansion, and the third
line the metal cavity expansion). The next two terms contribute
to positive changes in frequency because’s and ’s are each
assumed to be negative numbers by themselves. The resulting
normalized frequency change is represented by the vertical
distance of the right-most point in the diagram.

The temperature sensitivity diagram from Fig. 2 is a conve-
nient tool for spotting the critical parts of the system (those parts
that contribute largest changes to the value of). Furthermore,
by observing the relative sizes of individual segments in the
temperature diagram, it becomes possible to decide whether the
values of should be increased or decreased in order to obtain
a perfect temperature compensation, namely, .

V. MEASUREDRESULTS

The experimental resonant cavity consists of aluminum
housing, a dielectric resonator, and an alumina ceramic sup-
port, both dielectric regions being of a tubular shape, as shown
in Fig. 3. The cavity operates in the 2-GHz frequency region,
and its tuning mechanism has been removed. The dimensions
and the material properties are listed in Table I.

The variation of the resonant frequency of the mode
was measured in a temperature chamber. The experimental re-
sults are shown in Fig. 4. At 25C, the measured resonant fre-
quency is 1909.854 MHz. It can be seen that the temperature
response is somewhat nonlinear. At the reference temperature
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Fig. 3. Experimental cavity.

TABLE I
CAVITY DIMENSIONS AND MATERIAL PROPERTIES

Fig. 4. Measured frequency variation with temperature for a cavity from Fig. 3.

C, the temperature slope is estimated to be
ppm/ C.

The sensitivity coefficients were computed with the use of
the computer program AKBOR [9], which is based on the sur-
face integral-equation formulation and the method of moments
for the analysis of axi-symmetric objects. The code can be used
to compute the radar cross section of scatterers, radiation pat-
terns of antennas, and the resonant frequency and-factor of
dielectric resonators in free space or in closed cavities. For the
dielectric resonator in free space, the resonant frequency and the
radiation -factor are computed directly from the zeros of the
determinant of the method-of-moment matrix by searching in
the complex frequency plane for the roots of the determinant, as
in [7, ch. 6]. For resonators enclosed by a conducting cavity, the

factor is computed using perturbation theory from the stored
energies and dissipated power inside the cavity.

Although the dielectric resonator has a short counter-bore
to fit the support, this detail has been ignored in the electro-

TABLE II
EXPANSION SENSITIVITY COEFFICIENTS

TABLE III
EPSILON SENSITIVITY COEFFICIENTS

magnetic model. It is believed that this detail is not likely
to change the overall results in any significant way. The
resonant frequency at room temperature was computed to
be MHz. Although all these digits are not
accurate, they are retained because they become meaningful
when incremental changes are needed in the computation of the
sensitivity coefficients. The computed sensitivity coefficients
are listed in Tables II and III.

The dielectric-resonator-type D-8734 is manufactured by
Trans-Tech, Adamstown, MD (a subsidiary of Alpha Indus-
tries). The manufacturer’s value of the expansion coefficient is

ppm/ C, and the frequency temperature coefficient is
quoted as ppm/ C. The alumina support is manufac-
tured by Superior Technical Ceramics (STC), Monrovia, CA,
with quoted expansion coefficient of ppm/ C and the
dielectric constant of 9.7. As the manufacturer does not specify
the value of , we take the value to be ppm/ C, ac-
cording to [1]. This value is also similar to the one quoted in [2]
for somewhat less pure alumina, namely, ppm/ C.
We measured the empty cavity expansion coefficient to be
23.12 ppm/C.

All the coefficients needed for substitution in (22) are now
available, except for of the dielectric resonator. As lamented
in [7, p. 361], manufacturers of dielectric resonators do not mea-
sure this quantity, although the measurement procedure devel-
oped by Courtney [1] is quite straightforward. The value of
is measured in the manufacturer’s standard cavity, which has a
cavity radius and cavity height about three times larger than the
dielectric resonator. If we use the value ppm/ in the
approximate equation [7, p. 359]

(23)

we obtain ppm/ C.
When this value is substituted in (22), the temperature dia-

gram looks such as shown by a dashed line in Fig. 5. As can be
seen from the figure, the computed result ppm/ C
differs considerably from the measured one. Also apparent from
the diagram is that the product is the most significant
part of the total value . As has been shown in [7, p. 361], the
uncertainty in when using the approximate equation (23)
can reach 25%. Due to this, we decided to measure this coeffi-
cient directly, as described in the Appendix. Using our measured
value ppm/ C in (22) results in a computed fre-
quency sensitivity ppm/ C. This result is much
closer to the measured value (see the solid line).
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Fig. 5. Computed temperature diagram of the experimental cavity. Dashed
line: � = �22:4 ppm/ C, solid line:� = �28:56 ppm/ C.

It is now possible to compute the desired value of that
would yield a perfect temperature compensation. In order for

from (22) to vanish, the dielectric resonator should be made
of material with ppm/ C.

VI. CONCLUSIONS

When a dielectric resonator is placed on a dielectric support
and enclosed within a conducting cavity, a composite resonant
cavity is created. Equations (7) and (22) describe a linear
model governing the temperature variation of such composite
microwave resonant cavities. The sensitivity coefficients,
needed in this model, depend on the particular construction of
the composite cavity. For given dimensions and given material
properties, the sensitivity coefficients can be evaluated with
the use of a computer program, which solves for the resonant
frequency in the cavity filled with inhomogeneous dielectrics.
Equations (10) and (13) specify the theoretical limits on the
sensitivity coefficients obtained by such a numerical procedure.

A practical example of a composite resonator has been an-
alyzed and experimentally verified. It has been concluded that
the crucial role in the overall frequency variation with temper-
ature is played by the material property , the temperature
coefficient of the dielectric constant of the “puck.” At present,
manufacturers of dielectric resonators do not measure. In-
stead, they characterize the temperature behavior of their ma-
terials by providing the value of that has been determined
inside a metallic test cavity. Whereas such a value ofis valid
for a particular test cavity only, operating in a particular res-
onant mode only (typically ), the customers really need
the value of that will be valid for a cavity of any size, oper-
ating in any resonant mode.

APPENDIX

MEASUREMENT OF

The procedure for measurement of temperature coefficient of
the dielectric constant has been described in detail by Courtney
[1]. For that measurement, it is customary to use a solid cylin-
drical sample of the dielectric, and measure the resonant fre-
quency of the sample placed between two parallel

TABLE IV
MEASUREMENT OF�

Fig. 6. Relative dielectric constant versus temperature (dimensions corrected
by the temperature expansion coefficient� = 10 ppm/ C).

conductor plates. To perform such a measurement directly with
the “puck” from Fig. 3 was impractical because of the receded
bottom wall, which would create considerable difficulties in
computing the resonant frequency when placed between parallel
conducting plates. However, the manufacturer has provided us
with another smaller tubular resonator made from the same pro-
duction batch. The dimensions of the sample were: 1) outer ra-
dius mm; 2) inner radius mm; and 3) height

mm. The sample was placed between two parallel
silver-plated conductors, and inserted into a temperature-con-
trolled chamber. The resonant frequency of the mode was
recorded as a function of temperature, with the results shown in
Table IV.

The relationship between the resonant frequency and the rela-
tive dielectric constant can be expressed analytically in terms of
Bessel functions. For the tubular resonator used here, the equa-
tions are somewhat more complicated than for the solid one used
by Courtney. Nevertheless, they can be solved by straightfor-
ward numerical procedures. Since the thermal expansion coef-
ficient is known (see Table I), we have corrected all three
dimensions , , and in accordance with the operating tem-
perature, and computed the dielectric constant for the corrected
dimensions. The dielectric constant comes out to be a very linear
function of temperature, as illustrated in Fig. 6. For the reference
temperature 25C, the temperature coefficient of the dielectric
constant is computed in accordance with (2)

ppm/ C

Due to the linear behavior, the same coefficient is valid over the
entire range of temperatures.
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Although the composite cavity used in the example resonates
around 2 GHz, the measurement of the temperature coefficient

was carried at the resonant frequency of the mode
for the sample at hand, namely, around 3.5 GHz. Nevertheless,
the results are useful in the 2-GHz range, as the relative dielec-
tric constant is practically constant over the wide frequency
range.
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